Rewording needed with extreme detail


Figure 9 and Figure 10 show the instantaneous efficiency plot against the adjusted difference in temperature. Figure 9 shows that efficiency decreases with larger temperature differences. The curve of efficiency vs time (Figure 5) and efficiency vs temperature (Figure 10) are very similar for the closed loop. So, the closed loop does not exhibit significant difference. Since the conditions under which the experiment was carried out were not perfect, the curve does not exhibit the exact shape that one would expect. If the experiment would have been carried out under ideal conditions, the efficiency line would be going down linearly. However, a linear trendline was added to the graph and it can be noticed that it does follow the path of an ideal curve. This indicates us that efficiency and (Tf, in – Tamb) are inversely proportional to each other.

On the other hand, for the open loop, the curve does not exhibit the expected shape. One of the reasons for this is that the data was gathered during a very small period so at the end very few points were used to plot the efficiency as a function of the temperature difference. However, a trendline was also added to this graph, and this trendline once again follows the same path as the curve of efficiency for an experiment carried out under ideal conditions.  

From the graph of x vs x it would be difficult to estimate the values of the heat removal factor (Fr) and the overall conductance (Uc) for the collector. The reason for this is that there are equivalent equations used to estimate these two parameters and each equation includes a variable that we were not asked to use to plot the efficiency curve. 

Equation 1 defined the collector efficiency (η) as the ratio of useful energy gain (Qu) to the incident solar energy over a period of time. Furthermore, the useful energy gain can be written in terms of certain parameters such as absorptivity (α) and transmissivity (τ) as shown in equation 5 below. 

If it is assumed that FR, τ, α and UC are constants for a given collector and flow rate, then the efficiency is a linear function of the three parameters defining the operating condition: Solar irradiance (Ic), Fluid inlet temperature (Tf, in) and Ambient air temperature (Tamb).  Then, the performance of a Flat-Plate Collector can be approximated by measuring these three parameters in experiments.

Since the efficiency curve for this specific question only asks to plot the efficiency as a function of temperature but not Ic, I cannot accurately estimate the values of Fr and Uc. I need the three parameters mentioned before to be able to approximate these values. 

However, since I have data for IC, I can make a plot of efficiency x vs x and use it to estimate the two parameters. In fact, the slope of the x vs xcurve is given by Equation 6 below.

Also, the y-intercept of the x vs x curve is related to absorptivity, transmissivity and heat removal factor by Equation 7 below.

If we assume values for x, the two relations given in Equation 6 and Equation 7 can be used to estimate values for FR and Uc.

The equation of a line indicates that mx+b

Where m is the slope and b the y-intercept.

For the efficiency curve shown below in Figure 11, we can get the equation of the line and compare it to get the value of the slope, m, and the y-intercept, b.


The respective equation of the line for the efficiency curve is given by

From this equation we see that that the slope -FR*Uc = -5.9 and y-int = 134.6.

Using Equation 7, we can plug the values assumed for x and solve for FR. From this calculation we get an estimate value of FR = 166.17. Furthermore, using Equation 6 and solving for Uc, we get and estimate value of Uc = 0.034 W/m^2 K. These estimations do not make sense because they are way off from theoretical values. The reason for this can be errors in the calculations or the fact that data is not gathered under ideal conditions. 

Another way of estimating values for Fr and Uc is to use the fact that Uc can be estimated to be 8 W/m^2 K for 1 glass cover. Hence, using this value in Equation 6 and solving for FR gives us a more accurate estimation of FR = 0.7.

Custom Writings Help
Calculate your paper price
Pages (550 words)
Approximate price: -

Why Work with Us

Top Quality and Well-Researched Papers

We always make sure that writers follow all your instructions precisely. You can choose your academic level: high school, college/university or professional, and we will assign a writer who has a respective degree.

Professional and Experienced Academic Writers

We have a team of professional writers with experience in academic and business writing. Many are native speakers and able to perform any task for which you need help.

Free Unlimited Revisions

If you think we missed something, send your order for a free revision. You have 10 days to submit the order for review after you have received the final document. You can do this yourself after logging into your personal account or by contacting our support.

Prompt Delivery and 100% Money-Back-Guarantee

All papers are always delivered on time. In case we need more time to master your paper, we may contact you regarding the deadline extension. In case you cannot provide us with more time, a 100% refund is guaranteed.

Original & Confidential

We use several writing tools checks to ensure that all documents you receive are free from plagiarism. Our editors carefully review all quotations in the text. We also promise maximum confidentiality in all of our services.

24/7 Customer Support

Our support agents are available 24 hours a day 7 days a week and committed to providing you with the best customer experience. Get in touch whenever you need any assistance.

Try it now!

Calculate the price of your order

Total price:

How it works?

Follow these simple steps to get your paper done

Place your order

Fill in the order form and provide all details of your assignment.

Proceed with the payment

Choose the payment system that suits you most.

Receive the final file

Once your paper is ready, we will email it to you.

Our Services

No need to work on your paper at night. Sleep tight, we will cover your back. We offer all kinds of writing services.


Essay Writing Service

No matter what kind of academic paper you need and how urgent you need it, you are welcome to choose your academic level and the type of your paper at an affordable price. We take care of all your paper needs and give a 24/7 customer care support system.


Admission Essays & Business Writing Help

An admission essay is an essay or other written statement by a candidate, often a potential student enrolling in a college, university, or graduate school. You can be rest assurred that through our service we will write the best admission essay for you.


Editing Support

Our academic writers and editors make the necessary changes to your paper so that it is polished. We also format your document by correctly quoting the sources and creating reference lists in the formats APA, Harvard, MLA, Chicago / Turabian.


Revision Support

If you think your paper could be improved, you can request a review. In this case, your paper will be checked by the writer or assigned to an editor. You can use this option as many times as you see fit. This is free because we want you to be completely satisfied with the service offered.